个人简介
邮箱:huangchen@pmlabs.com.cn; 微信号:huangchen_pml;
导航: 科研项目 |发表文章 | 专利 | 标准提案 | Tutorials |英文专著 | 获奖及荣誉 |教育经历 |指导学生
科研项目
国家重点研发计划(项目编号2023YFB2904800),“面向6G复杂应用场景的高动态无线环境预测与重建”课题二“面向6G广频段多场景新技术的信道测量与建模”(项目编号2023YFB2904802),课题负责人(2023.12–2026.11),350万元。
中国科协青年人才托举工程(项目编号2022QNRC001),“基于人工智能的普适预测信道建模”,项目负责人(2022.10 – 2025.10),30万元。
国家自然科学基金青年项目(项目编号62301364),“基于机器学习的6G普适预测信道建模研究”,项目负责人(2024.1 – 2026.12),30万元。
国家重点研发计划青年科学家项目(项目编号2022YFB2903800),“基于光子无线融合的感知通信一体化系统理论与关键技术研究”,子任务负责人(2022.11.01 – 2025.10.31),300万元。
江苏省重点研发计划项目(项目编号BE2022067、BE2022067-1),“未来 6G 无线通信信道测量、建模与性能评估技术研发”,子任务负责人(2022.6 – 2026.6),1500万元。
国家自然科学基金面上项目(项目编号62371346),“面向6G的网络辅助自由双工无蜂窝接入网传输理论与技术研究”,项目参与(2024.1 – 2027.12),49万元。
中国博士后科学基金第70批面上项目(项目编号:2021M702499)“基于机器学习的频域预测信道建模”,项目负责人(2021.10.15 – 2023.3.15),8万元。
江苏省卓越博士后计划,“基于人工智能的6G无线通信空时频预测信道建模”,项目负责人(2021.4.17 – 2023.4.16),30万元。
南京市留学人员科技创新项目A类,“基于人工智能的空域信道预测研究”,项目负责人(2022.9.28 – 2023.9.28),10万元。
- 南京市博士后招收资助“基于多径簇的时变无线信道建模研究”,项目负责人(2021.4-2023.4),10万元。
- 重庆市研究生科研创新项目(项目编号:CYS14141),“基于负载感知的网络资源分配研究”,项目负责人(2012 – 2013),3万元。
发表文章
更多相关研究论文,请移步 谷歌学术
代表性期刊论文
[1]. C. Huang, C.-X. Wang*, Z. Li, Z. Qian, W. Zhou, J. Li*, Y. Miao, “A frequency-domain predictive channel model for 6G wireless MIMO systems based on deep learning,” IEEE Trans. Commun., vol. 72, no. 8, pp. 4887-4902, Aug. 2024.
[2]. Z. Li, C.-X. Wang*, C. Huang*, J. Huang, J. Li, W. Zhou, and Y. Chen, “A GAN-GRU based space-time predictive channel model for 6G wireless communication systems,” IEEE Trans. Veh. Technol., vol. 73, no. 7, pp. 9370-9386, July 2024.
[3]. W. Zhou, C.-X. Wang*, C. Huang*, Z. Li, Z. Qian, Z. Lv, and Y. Chen, “Channel scenario extensions, identifications, and adaptive modeling for 6G wireless communications,” IEEE Internet Things J., vol. 11, no. 5, pp. 7285-7308, Mar. 1, 2024.
[4]. C. Huang, R. He*, B. Ai*, A. F. Molisch, B. K. Lau, K. Haneda, B. Liu, C.-X. Wang, M. Yang, O. Claude and Z. Zhong, “Artificial intelligence enabled radio propagation for communications—Part II: Scenario identification and channel modeling,” IEEE Trans. Antennas Propag., vol. 70, no. 6, pp. 3955-3969, June 2022. (Invited paper, IEEE Monthly Featured Article, TAP popular paper)
[5]. C. Huang, R. He*, B. Ai*, A. F. Molisch, B. K. Lau, K. Haneda, B. Liu, C.-X. Wang, M. Yang, O. Claude and Z. Zhong, “Artificial intelligence enabled radio propagation for communications—Part I: Channel characterization and antenna-channel optimization,” IEEE Trans. Antennas Propag., vol. 70, no. 6, pp. 3939-3954, June 2022. (Invited paper, IEEE Monthly Featured Article, TAP popular paper)
[6]. C. Huang, R. Wang, C.-X. Wang*, P. Tang, A. F. Molisch, “A geometry-based stochastic model for truck communication channels in freeway scenarios,” IEEE Trans. Commun., vol. 70, no. 8, pp. 5572-5586, Aug. 2022.
[7]. C. Huang, R. Wang, P. Tang, R. He, B. Ai, Z. Zhong, C. Oestges and A. F. Molisch, “Geometry-cluster-based stochastic MIMO model for vehicle-to-vehicle communications in street canyon scenarios,” IEEE Trans. Wirel. Commun., vol. 20, no. 2, pp. 755-770, Feb. 2021.
[8]. C. Huang, A. F. Molisch, R. He, R. Wang, P. Tang, B. Ai and Z. Zhong, “Machine learning-enabled LOS/NLOS identification for MIMO systems in dynamic environments,” IEEE Trans. Wirel. Commun., vol. 19, no. 6, pp. 3643-3657, Jun. 2020.
[9]. C. Huang, A. F. Molisch, Y. Geng, R. He, B. Ai and Z. Zhong, “Trajectory-joint clustering algorithm for time-varying channel modeling,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1041-1045, Jan. 2020.
[10]. C. Huang, A. F. Molisch, R. He, R. Wang, P. Tang and Z. Zhong, “Machine-learning-based data processing techniques for vehicle-to-vehicle channel modeling,” IEEE Commun. Mag., vol. 57, no. 11, pp. 109-115, Nov. 2019.
[11]. C. Huang, R. He, Z. Zhong, B. Ai, Y. Geng, Z. Zhong, Q. Li, K. Haneda and C. Oestges, “A power-angle-spectrum based clustering and tracking algorithm for time-varying radio channels,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 291-305, Jan. 2019.
[12]. C. Huang, R. He, Z. Zhong, Y. Geng, Q. Li and Z. Zhong, “A novel tracking-based multipath component clustering algorithm,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2679-2683, 2017.
[13]. C. Huang, Q. Chen and L. Tang, “Hybrid inter-cell interference management for ultra-dense heterogeneous network in 5G,” Sci. China Inf. Sci., vol. 59, no. 8, 2016.
[14]. M. Yang, R. He, B. Ai, C. Huang, C. Wang, Y. Zhang, Z. Zhong, “AI-enabled Data-driven Channel Modeling for Future Communications,” IEEE Commun. Mag., Accepted, 2023.
[15]. R. He, B. Ai, G. Wang, M. Yang, C. Huang and Z. Zhong, “Wireless channel sparsity: measurement, analysis and exploitation in estimation,” IEEE Wirel. Commun., vol. 28, no. 4, pp. 113-119, Aug. 2021.
[16]. G. Sun, R. He, B. Ai, C. Huang and Z. Zhong, “Dynamic clustering of multipath components for time-varying propagation channels,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13396-13400, Dec. 2021.
[17]. M. Yang, B. Ai, R. He, C. Shen, M. Wen, C. Huang, J. Li, Z. Ma, L. Chen, X. Li and Z. Zhong, “Machine-learning-based scenario identification using channel characteristics in intelligent vehicular communications,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 3961-3974, July 2021.
[18]. M. Yang, B. Ai, R. He, C. Huang, Z. Ma, Z. Zhong, J. Wang, L. Pei, Y. Li, J. Li, “Machine-learning-based fast angle-of-arrival recognition for vehicular communications,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1592-1605, Feb. 2021.
[19]. M. Yang, B. Ai, R. He, G. Wang, L. Chen, X. Li, C. Huang, Z. Ma, Z. Zhong, J. Wang, Y. Li and T. Juhana, “Measurements and cluster-based modeling of vehicle-to-vehicle channels with large vehicle obstructions,” IEEE Trans. Wirel. Commun., vol. 19, no. 9, pp. 5860-5874, Sept. 2020.
[20]. M. Yang, B. Ai, R. He, L. Chen, X. Li, J. Li, B. Zhang, C. Huang and Z. Zhong, “A cluster-based three-dimensional channel model for vehicle-to-vehicle communications,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5208-5220, June 2019.
[21]. Q. Zheng, R. He, B. Ai, C. Huang, W. Chen, Z. Zhong and H. Zhang, “Channel non-line-of-sight identification based on convolutional neural networks,” IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1500-1504, Sept. 2020.
[22]. Q. Chen, C. Huang, and L. Tang. “Load-ware based dynamic enhanced inter-cell interference coordination scheme in heterogeneous networks,” Journal of Beijing University of Posts & Telecommunications, vol. 16, no. 11, 2015. (EI期刊,导师一作)
[23]. C. Huang, Q. Chen, and L. Tang. “A survey on interference management for LTE-A network,” Journal of Chongqing University of Posts & Telecommunications, vol. 27, no. 3, 2015.(中文核心)
代表性会议论文
[24]. K. Zhang, C. Huang*, J. Li, Z. Qian, C.-X. Wang*, “An enhanced loss function for space-time domain predictive channel model”, in Proc. IEEE ICCT’24, Chengdu, China, Oct. 2024, pp. 1-5.
[25]. L. Song, J. Li, T. Wu, X. Chen, C. Huang, and C.-X. Wang, “6G dynamic channel map construction based on AI and image processing”, in Proc. IEEE ICCT’24, Chengdu, China, Oct. 2024, pp. 1-5.
[26]. Y. Zhou, J. Li, T. Wu, G. Su, C. Huang, and C.-X. Wang, “Efficient 3D electromagnetic environment reconstruction with fused data for 6G digital twin online channel modeling”, in Proc. IEEE ICCT’24, Chengdu, China, Oct. 2024, pp. 1-5.
[27]. Z. Qian, C. Huang*, C.-X. Wang*, J. Li, and W. Zhou, “A novel intelligent scenario identification algorithm and channel characteristics analysis for 6G urban wireless communications” in Proc. IEEE Globecom’24, Cape Town, South Africa, Dec. 2024, pp. 1-6.
[28]. S. Xiao, H. Zhang, M. Yao, C. Cui, J. Li, C. Huang*, and C.-X. Wang*, “A novel 3D environment-aware digital twin online channel modeling platform,” in Proc. IEEE/CIC ICCC’24, Hangzhou, China, Aug. 2024, pp. 1-2, 2024. (BEST DEMO AWARD)
[29]. T. Qi, C. Huang*, J. Shi, J. Li, and C.-X. Wang*, “A novel dynamic channel map for 6G MIMO communications,” in Proc. IEEE/CIC ICCC’24, Hangzhou, China, Aug. 2024, pp. 1-6.
[30]. H. Li, C. Huang*, C.-X. Wang, J. Li, “Scenario classification and channel modeling for MIMO communications in dense urban street scenarios,” in Proc. IEEE EuCAP’24, Glasgow, Scotland, Mar. 2024, pp. 1-5.
[31]. D. Zhao, C. Huang*, C.-X. Wang*, J. Li, Z. Qian, and W. Zhou, “Channel characterization and modeling for wireless MIMO communication systems in intersection scenarios,” in Proc. EuCAP’24, Glasgow, Scotland, Mar. 2024, pp. 1-5.
[32]. D. Zhao, C. Huang*, C.-X. Wang*, and J. Li, “Scenario classification and channel modeling for MIMO communications in suburban road scenarios,” in Proc. EuCAP’24, Glasgow, Scotland, Mar. 2024, pp. 1-5.
[33]. T. Wu, C.-X. Wang*, J. Li*, and C. Huang, “Machine learning-based predictive channel modeling for 6G wireless communications using image semantic segmentation,” in Proc. IEEE PIMRC’23, Toronto, Canada, Sept. 2023, pp. 1-5.
[34]. Shuyi Ding, Chen Huang*, C-X. Wang*, Junling Li, Wenqi Zhou and Deyuan Zhao, ”A novel scenario segmentation-identification algorithm for 6G wireless channel modeling” in Proc. IEEE ICCT’23, Wuxi, China, Oct. 2023, pp. 1-5. (Best Paper Award)
[35]. Z. Li, C.-X. Wang*, C. Huang*, L. Yu, J. Li, and Z. Qian, “A novel scatterer density-based predictive channel model for 6G communications,” in Proc. IEEE VTC’23-Spring, Florence, Italy, June 2023, pp. 1-5.
[36]. Z. Qian, Z. Li, W. Zhou, C. Huang*, and C.-X. Wang*, “6G wireless channel scenario extensions and characteristics analysis,” in Proc. VTC-Spring’23, Florence, Italy, June 2023.
[37]. Z. Li, C.-X. Wang*, J. Huang, W. Zhou, and C. Huang*, “A GAN-LSTM based AI framework for 6G wireless channel prediction,” in Proc. IEEE VTC’22-Spring, Helsinki, Finland, June 2022.
[38]. Y. Wu, Y. Wang, J. Huang, C. -X. Wang*, and C. Huang*, “A weighted random forest based positioning algorithm for 6G indoor communications,” in Proc. IEEE VTC2022-Fall, London, United Kingdom, Sep. 2022, pp. 1-6.
[39]. C. Huang, A. Molisch, R. Wang, P. Tang, R. He and Z. Zhong, “Angular information-based NLOS/LOS identification for vehicle to vehicle MIMO system,” in Proc. 2019 IEEE ICC-ws, Shanghai, China, May 2019, pp. 1-6.
[40]. C. Huang, A. F. Molisch, R. Wang, P. Tang, R. He and Z. Zhong, “Research on kernel functions of SVM for line-of-sight identification in vehicle-to-vehicle MIMO system,” in Proc. 2019 IEEE A-PS, GA, USA, Jul. 2019, pp. 2107-2108.
[41]. C. Huang et al., “A novel target recognition based radio channel clustering algorithm,” in Proc. 2018 WCSP, Hangzhou, China, Oct. 2018, pp. 1-6. (Best paper award)
[42]. C. Huang, R. He, Z. Zhong, B. Ai and Z. Zhong, “Comparison of automatic tracking and clustering algorithms for time-variant multipath components,” in Proc. 2017 IEEE Globecom-ws, Singapore, Dec. 2017, pp. 1-6.
[43]. C. Huang, R. He and Z. Zhong, “A novel power weighted multipath component tracking algorithm,” in Proc. 32th URSI GASS 2017, Montreal, Mar. 2017, pp. 1-4.
[44]. C. Huang, R. He, Z. Zhong and Z. Zhong, “Analysis of edge detection for the clusters in radio propagation channel,” in Proc. 2018 IEEE A-PS, Boston, MA, Jul. 2018, pp. 91-92.
[45]. C. Huang, R. He, B. Ai, M. Yang, Y. Geng and Z. Zhong, “Clustering performance evaluation algorithm for vehicle-to-vehicle radio channels” in Proc. EuCAP, Copenhagen, Denmark, Mar. 2020, pp. 1-4.
[46]. Y. Wu, Y. Wang, J. Huang, C. -X. Wang and C. Huang, “A weighted random forest based positioning algorithm for 6G indoor communications,” in Proc. IEEE VTC2022-Fall, London, United Kingdom, Sep. 2022, pp. 1-6.
[47]. Z. Li, C. -X. Wang, J. Huang, W. Zhou and C. Huang, “A GAN-LSTM based AI framework for 6G wireless channel prediction,” in Proc. IEEE VTC2022-Spring, Helsinki, Finland, Jun. 2022, pp. 1-5.
[48]. G. Sun, C. Huang, Z. Cheng, R. He, B. Ai and A. F. Molisch, “A Study of Clustering Algorithms for Time-Varying Multipath Components in Wireless Channels,” in Proc. IEEE MILCOM, San Diego, CA, USA, Nov. 2021, pp. 414-419.
[49]. H. Zhang, C. Huang, M. Gao, M. Yang and R. Chen, “A time-varying clustering algorithm for channel modeling of vehicular MIMO communications,” in Proc. 2020 IEEE A-PS/URSI, Rome, Italy, Aug. 2020, pp. 1-4.
[50]. M. Hu, Y. Ye, R. He, B. Ai, C. Huang and Z. Zhong, “A novel power weighted multipath component clustering algorithm based on spectral clustering,” in Proc. IEEE VTC2020-Spring, Antwerp, Belgium, May 2020, pp. 1-5.
[51]. W. Lyu, Y. Li, Z. Liu, C. Huang and R. He, “A Target Recognition-Based NLOS Identification Algorithm,” in Proc. 2019 IEEE A-PS/URSI, Atlanta, GA, USA, Jul. 2019, pp. 2093-2094.
[52]. P. Tang, R. Wang, A. F. Molisch, C. Huang and J. Zhang, “Path loss analysis and modeling for vehicle-to-vehicle communications in convoys in safety-related scenarios,” in Proc. 2019 IEEE CAVS, Honolulu, HI, USA, Sep. 2019, pp. 1-6.
[53]. M. Yang, B. Ai, R. He, L. Chen, X. Li, J. Li, Q. Wang, B. Zhang and C. Huang “A cluster-based 3D channel model for vehicle-to-vehicle communications,” in Proc. 2018 IEEE/CIC ICCC, Beijing, China, Aug. 2018, pp. 741-746. (Best paper award)
[54]. M. Yang, B. Ai, R. He, C. Huang, J. Li, L. Chen and X. Li “Influence of different antenna locations on channel characterization for V2V communications,” in Proc. 2018 IEEE A-PS/URSI, Boston, MA, Jul. 2018, pp. 377-378.
[55]. M. Yang, B. Ai, R. He, L. Chen, X. Li, Z. Huang, J. Li, B. Zhang and C. Huang “Path loss analysis and modeling for vehicle-to-vehicle communications with vehicle obstructions,” in Proc. 2018 WCSP, Hangzhou, Oct. 2018, pp. 1-6.
专利
已授权
[1]. 黄晨、王承祥、冯瑞、黄杰、辛立建、常恒泰,信道建模方法、装置、电子设备及存储介质,受理号:ZL 202111506183.0
[2]. 黄晨,何睿斯,钟章队等,无线时变信道中的多径分量的分簇方法,ZL 201710471869.8
[3]. 黄晨,何睿斯,郑青碧等,一种基于支持向量机的无线信道场景识别方法,ZL 201811155551.X
[4]. 陈前斌,黄晨,刘益富等,一种基于马尔可夫链的通信网络负载状态信息预测方法,ZL 201410768962.1
[5]. 陈前斌,黄晨,刘益富等,一种异构网络中基于负载感知的动态干扰管理方法,ZL 201410766928.0
[6]. 王承祥、李哲鳌、黄杰、周文奇、黄晨,一种基于对抗网络与长短期记忆网络的预测信道建模方法,ZL 202210214717.0.
[7]. 马张枫,艾渤,何睿斯,孙桂琪,米航,刘昌柱,周承毅,杨汨,温子睿,黄晨,一种基于天线辐射方向图的无人机信道建模方法,ZL 202210143294.8.
PCT专利
[8]. C. Wang, Z. Li, J. Huang, W. Zhou, C. Huang,Predictive channel modeling method based on generative adversarial network and long short-term memory artificial neural network,5535/0125PUS1, USA
受理中
[9]. 黄晨、王承祥、李哲鳌、钱中玉、周文奇、常恒泰、辛立建,一种基于深度学习的预测信道建模方法及相关装置. 受理号:202211685853.4.
[10]. 王承祥,周文奇,黄晨,李哲鳌,钱中玉. 一种针对6G全覆盖无线通信的场景扩展与分类方法. 受理号:202211604035.7.
[11]. 王承祥,周文奇,黄晨,李哲鳌,钱中玉. 一种基于6G全覆盖场景分类的场景自适应信道建模方法. 受理号:202211603711.9.
[12]. 辛立建,王承祥,黄晨,黄杰,冯瑞,常恒泰. 无线信道的信道多径聚簇方法、装置、电子设备及介质. 受理号:202210891088.5
[13]. 王承祥,李哲鳌,于龙,黄晨,黄杰,钱中玉,一种基于机器学习的空时域预测信道建模方法. 受理号:202211189126.9.
[14]. 常恒泰,王承祥,黄杰,黄晨,冯瑞,辛立建,无人机通信波束域信道仿真方法、装置、电子设备及介质. 受理号:20211506183.0.
[15]. 王承祥,季雯协,黄杰,杨悦,黄晨. 一种面向轨道角动量无线通信的波束域信道建模方法. 受理号:202310924281.9.
[16]. 王承祥,吴彤,李俊伶,黄晨. 基于图像处理和机器学习的信道预测方法. 受理号:202311096516.6.
[17]. 王承祥,李哲鳌,黄晨,于龙,李俊伶,钱中玉. 一种基于散射体密度的场景预测信道建模方法. 受理号:202311097011.1.
[18]. 何睿斯,孙桂琪,黄晨,艾渤,马张枫,米航,陈瑞凤,费丹,钟章队. 一种动态信道的时变多径聚类方法,受理号:202111312442.6
[19]. 王承祥,武阳,王樱华,黄晨,李俊伶,杨松江. 适用于6G室内通信的视距/非视距识别辅助定位方法[18]. ,受理号:202411330758.1
标准提案
(1). 王承祥,钱中玉,黄晨,李哲鳌,李俊伶,王樱华. 基于人工智能的6G空时频预测信道建模方法, IMT2030 6G推进组无线AI任务组, 提案编号:IMT-2030_WX_AI_202403018, 2024.03.15.
(2). 王承祥,武阳,黄晨,李俊伶,王樱华. 适用于6G室内MIMO通信的加权随机森林定位方法, IMT2030 6G推进组无线AI任务组, 提案编号:IMT-2030_WX_AI_202403020, 2024.03.15.
(3). 王承祥,吴彤,李俊伶,黄晨,王樱华. 基于图像处理和机器学习的信道预测方法, IMT2030 6G推进组无线AI任务组, 提案编号:IMT-2030_WX_AI_202403019, 2024.03.15.
(4). 王承祥,黄晨,钱中玉,李俊伶,周文奇. 场景自适应信道模型,202310024,IMT2030 6G推进组无线技术工作组第5次会议,2023.10.22.
(5). 王承祥,周子皓,黄杰,辛立建,黄晨. 城市微小区场景Sub-6 GHz跨频段信道测量与建模,202310012,IMT-2030无线技术工作组第5次会议,2023.10.22.
(6). 王承祥,杨润若,黄杰,辛立建,黄晨. 一种结合前向散射与后向散射的新型6G通感一体化信道模型,202310007,IMT2030 6G推进组无线技术工作组第5次会议,2023.10.22.
(7). 王承祥,吕振,黄杰,黄晨,常恒泰. 6G普适信道模型全域信道统计特性分析,202310023,IMT2030 6G推进组无线技术工作组第5次会议,2023.10.22.
(8). 王承祥,李哲鳌,黄晨,李俊伶,6G空时预测信道建模研究,IMT2030 6G推进组无线AI任务组2023年度第1次会议,2023.04.08.
(9). 王承祥,杨润若,黄杰,辛立建,黄晨,一种结合前向散射与后向散射的新型6G通感一体化信道模型,IMT-2030推进组通信感知一体化任务组第6次会议,2023.03.31.
(10). Cheng-Xiang Wang, Yi Zheng, Jie Huang, Rui Feng, Chen Huang, Measurements and Characteristics Analysis of 6G Ultra-Massive MIMO Wireless Channelswith Different Antenna Configurations and Scenarios, ITU-R CG 3K-6 Discussion, 2023.03.15.
(11). Chen Huang, Andreas F. Molisch, Yangli-Ao Geng, Ruisi He, Bo Ai, Zhangdui Zhong, Trajectory-Joint Clustering Approach for Vehicle-to-Vehicle Channel Modeling, COST2020, CA15104 TD(20)12003, 2020.
(12). Chen Huang, Ruisi He, Zhangdui Zhong, Bo Ai, Yangli-Ao Geng, Zhimeng Zhong, Qingyong Li, Katsuyuki Haneda, Claude Oestges, A Power-Angle-Spectrum Based Clustering and Tracking Algorithm for Time-varyingRadio Channels, COST2020, CA15104 TD(20) 12002, 2020.
Tutorials
[1]. C.-X. Wang, J. Huang, C. Huang, and H. Haas, “6G wireless channels: measurements, characteristics analysis, and modeling methodologies,” Tutorial, in Proc. IEEE WCNC’24, Dubai, United Arab Emirates, 21–24 April. 2024. https://wcnc2024.ieee-wcnc.org/
[2]. C.-X. Wang, J. Huang, C. Huang, and H. Haas, “Towards 6G Communications: Wireless Channel Measurements, Characteristics Analysis, and Modeling” Tutorial, in Proc. IEEE GlobeCom’23, Kuala Lumpur, Malaysia, 4 - 10 Dec. 2023.
[3]. C.-X. Wang, J. Huang, C. Huang, H. Wang, and H. Haas, “6G Wireless Channels: Measurements, Characteristics Analysis, and Modeling Methodologies,” Tutorial, in Proc. in IEEE VTC-Fall’23, Hong Kong, China, 10 Oct. 2023.
[4]. C.-X. Wang, J. Huang, C. Huang, H. Wang, and H. Haas, “Channel measurements and modeling methods for 6G wireless communication systems,” Tutorial, in Proc. IEEE WCNC’23, Glasgow, Scotland, UK, 26–29 Mar. 2023.
[5]. C.-X. Wang, J. Huang, C. Huang, H. Wang, and H. Haas, “Wireless Channel Measurements, Characteristics Analysis, and Modeling Methodologies Towards 6G,” Tutorial, in Proc. in IEEE/CIC ICCC’23, Dalian, China, 10 Aug. 2023.
英文专著
[1]C. Huang et al, “Chapter 2: Applications of machine learning on wireless channel modeling”, Applications of Machine Learning on Wireless Communications, published, The Institution of Engineering and Technology (IET), 2018. (章节第一作者)
获奖及荣誉
- IEEE/CIC ICCC Best Demo Award,2024
- 第28届“中国青年五四奖章集体”,2024
- 紫金山实验室工会积极分子,2023
- IEEE ICCT Best Paper Award (Corresponding Author),2023
- 中兴通讯“促进产学研合作青年专家委员会”专家,2023
- 中国科协青年人才托举工程,2022
- 网络通信与安全紫金山实验室优秀员工,2022
- 全国博士后青年科技人才扬子江论坛优秀学术成果“优秀奖”,2022
- 网络通信与安全紫金山实验室“登攀者”最佳学员,2022
- 网络通信与安全紫金山实验室“登攀者”最佳风采奖,2022
- 网络通信与安全紫金山实验室“登攀者”团队第一名,2022
- 江苏省卓越博士后,2022
- 网络通信与安全紫金山实验室优秀新人,2021
- 北京市优秀博士毕业生,2021
- 全国研究生电子设计竞赛一等奖,2020
- 华为通信与网络竞赛亚军,2020
- MathWorks企业专项奖二等奖,2020
- 北京交通大学知行(校长)奖学金,2020
- 国家奖学金,2019
- 华为奖学金,2019
- WCSP2018最佳会议论文奖,2018
- IEEE ICCC2018最佳会议论文奖,2018
- 秋琦奖学金, 北京交通大学, 2017
- 重庆邮电大学优秀毕业生 , 重庆邮电大学,2016
- 英语演讲大赛一等奖,重庆邮电大学, 2014
- 英语演讲大赛最佳风采奖,重庆邮电大学, 2014
教育经历
- 网络通信与安全紫金山实验室 & 东南大学 (2021年4月 – 2023年4月) – 双聘博士后(南京,中国)
- 法语鲁汶大学,电子电气工程学院 (2019年11月 – 2020年11月) – 联合培养博士生(新鲁汶, 比利时)
- 南加州大学,维特比电子工程学院 (2018年9月 – 2019年9月) – 联合培养博士生(洛杉矶, 美国)
- 北京交通大学,轨道交通控制与安全国家重点实验室 (2016年9月 – 2021年3月) –博士生(北京,中国)
- 重庆邮电大学,信息与通信学院 (2013年9月 – 2016年6月) – 硕士生(重庆,中国)
- 重庆邮电大学,通信与信息学院 (2009年9月 – 2013年6月) – 学士(重庆,中国)
指导学生
联合指导:
博士生:
- 周文奇,研究方向:基于AI的场景自适应信道建模研究
- 卜颖澜,研究方向:无线信道地图辅助的传输系统设计与优化
- 钱中玉,研究方向:基于AI的普适预测信道建模
- 齐天润,研究方向:基于GBSM与RT融合的无线信道知识地图构建
- 杨乾泽,研究方向:人工智能驱动的6G通信场景识别算法
- 王千瑞,研究方向:面向车联网场景的数字孪生平台构建
硕士生:
- 武阳,研究方向:基于机器学习的室内高精度定位研究
- 丁书艺,研究方向:基于电子地图的无线通信场景分割与识别研究
- 石佳粤,研究方向:基于射线追踪的半确定性几何随机信道建模研究
- 张开元,研究方向:基于AI的普适模型性能评估
- 李涵成,研究方向:基于现网实测的城市支路场景分类与信道建模研究
- 陈品翰,研究方向:面向地下空间场景的6G信道测量与建模
毕业生:
- 李哲鳌,毕业取向:已前往南洋理工读博
- 赵德源,毕业取向:无锡市公务员
- 王若宇,毕业取向:东南大学卓工学院辅导员